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A B S T R A C T

As part of a criminal investigation, the police often administer a recognition memory task known as a photo
lineup. A typical 6-person photo lineup consists of one suspect (who may or may not be guilty) and five phy-
sically similar foils (all known to be innocent). The photos can be shown simultaneously (i.e., all at once) or
sequentially (i.e., one at a time). Approximately 30% of U.S. police departments have moved to using the se-
quential lineup procedure over the last 30 years, yet its theoretical underpinnings remain poorly understood. A
simple signal detection model makes several unexpected predictions about how the sequential lineup procedure
should affect the ability of eyewitnesses to discriminate innocent from guilty suspects. For example, empirical
discriminability (area under the receiver operating characteristic) should decrease as the position of the suspect
in the lineup increases. In addition, under some conditions, a fair sequential lineup should not yield higher
discriminability than a single-person (non-lineup) recognition test known as a showup. The results of two ex-
periments reported here confirmed these predictions. Counterintuitively, even though empirical discriminability
decreased as the suspect’s sequential position increased, a signal detection model fit to the data indicated that
theoretical discriminability exhibited a small effect in the opposite direction (increasing with the sequential
position of the suspect). The latter result is consistent with diagnostic feature-detection theory of eyewitness
identification.

Introduction

Nowadays, the most common eyewitness identification procedure in
the United States is a photo lineup, which has largely replaced the live
lineups the police once used. A photo lineup consists of a picture of one
suspect (the person who the police believe may have committed the
crime) plus several additional photos of physically similar people who
are known to be innocent. The photos can be shown all at once—the
traditional simultaneous lineup, developed by the police long ago—or
one at a time—the newer sequential lineup, developed by experimental
psychologists in 1985 (Lindsay & Wells, 1985). In lab-based studies of
the sequential lineup, a stopping rule is typically used such that the first
photo that is identified terminates the procedure.

Researchers usually evaluate competing lineup formats using mock-
crime laboratory experiments in which participants witness a staged
crime and are later shown a photo lineup in which the perpetrator is

either present or absent. A target-present lineup includes the perpe-
trator along with (usually 5) similar foils; a target-absent lineup is the
same except that the perpetrator is replaced by another similar foil who
serves as the designated innocent suspect. For decades, diagnostic ac-
curacy was assessed using a statistic known as the diagnosticity ratio
(DR), which is the hit rate (HR) divided by the false alarm rate (FAR).
The HR is the proportion of target-present lineups that resulted in a
correct identification of the guilty suspect. For example, if 70% of
target-present lineups resulted in a correct ID of the guilty suspect, 20%
resulted in an incorrect ID of a foil, and 10% resulted in no ID, the HR
would be 0.70. The FAR is the proportion of target-absent lineups that
resulted in an incorrect identification of the innocent suspect. For ex-
ample, if 6% of target-absent lineups resulted in an incorrect ID of the
innocent suspect, 30% resulted in an incorrect ID of a foil, and 64%
resulted in no ID, the FAR would be 0.06.1 In the seminal study on this
issue, Lindsay and Wells (1985) reported that for the sequential lineup,
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HR=0.50 and FAR=0.17 (DRSEQ=0.50/0.17=2.94), whereas for
the simultaneous lineup, HR=0.57 and FAR=0.42 (DRSIM=0.57/
0.42=1.36). The higher DR for sequential lineups is the basis for what
came to be known as the “sequential superiority effect” (e.g., Steblay,
Dysart, & Wells, 2011).

In recent years, it has become widely appreciated that the DR
conflates discriminability (the ability of an eyewitness to discriminate
innocent from guilty suspects) with response bias (the overall tendency
to identify anyone from a lineup) (Gronlund, Wixted, & Mickes, 2014).
Because it increases as responding becomes more conservative, a higher
DR does not provide evidence that one procedure is superior to another.
Using signal detection theory as a guide, researchers are now more
likely to compare the diagnostic accuracy of competing lineup proce-
dures by measuring the area under the receiver operating characteristic
(ROC). The signal detection approach has also brought to light some
unusual properties of the sequential lineup procedure that had pre-
viously gone unnoticed (Rotello & Chen, 2016). We pursue those unu-
sual properties in some detail here, but we first briefly consider how
signal detection theory is ordinarily applied to a (non-lineup) recogni-
tion memory task.

Signal detection theory of recognition memory

Signal detection theory has been applied to old/new recognition
memory since Egan’s (1958) seminal report more than half a century
ago. A standard old/new memory test consists of targets (previously
presented list items) randomly intermixed with foils (novel items), each
presented for an individual “old/new” decision. Theoretically, the
memory signal for a target is drawn from a Gaussian distribution with a
relatively high mean, whereas the memory signal for the foil is drawn
from a Gaussian distribution with a relatively low mean (Fig. 1). The
decision to either identify or reject the test item is made in relation to a
decision criterion (c) placed somewhere on the memory strength axis.
At one extreme, with the criterion placed far to the left (very liberal
response bias), a participant would almost always respond “old,” in
which case both the hit rate and the false alarm rate would be∼1. That
is, all targets would be correctly classified as old, but all foils would be
incorrectly classified as old. At the other extreme, with the criterion
placed far to the right (very conservative response bias), a participant
would almost always respond “new,” in which case both the hit rate and
the false alarm rate would be ∼0. That is, all targets would be

incorrectly classified as new, and all foils would be correctly classified
as new.

When conducted in the context of eyewitness identification, an old/
new recognition test is called a showup. In a photo showup, the test
item is either the person who committed the crime (a photo of the
target) or an innocent suspect (a photo of a foil). In the eyewitness
context, an “old” decision is an identification (ID), and a “new” decision
is a non-identification (non-ID). The main difference between a stan-
dard old/new recognition experiment and a showup is that in the
former, each subject studies and is tested with many old and new items,
whereas in the latter, each study item is viewed by many subjects who
are then tested with a single old or new item. Thus, item variance is a
significant factor in a typical list-memory study, whereas subject var-
iance is a significant factor in a showup experiment. Despite these
differing sources of variance, the signal detection conceptualization of
the problem is the same in the two cases. As with the standard old/new
recognition memory test, a liberal response bias (with c set far to the
left) would yield hit and false alarm rates close to 1, and a conservative
response bias (with c far to the right) would yield hit and false alarm
rates close to 0.

A signal detection model for lineups

The standard signal detection-based interpretation of lineup per-
formance involves additional considerations because of the presence of
foils on a given test trial. Thus far, this model has most often been
applied to simultaneous lineups. In a 6-person simultaneous lineup, all
six faces are presented together. The simplest signal detection model of
decision making on this task is still grounded in the basic model shown
in Fig. 1. The lineup version of the model holds that, for a target-present
lineup (consisting of one guilty suspect plus five foils), the memory
signal for the suspect is randomly drawn from the target distribution,
and the memory signals for the five foils are randomly drawn from the
foil distribution. For a target-absent lineup (consisting of one innocent
suspect plus five foils), the memory signals for all six lineup members
are randomly drawn from the foil distribution. The reason is that for a
fair target-absent lineup, from the witness’s perspective, the innocent
suspect is effectively a foil (i.e., the innocent suspect—like the foils—is
someone who physically resembles the perpetrator but did not commit
the crime). Using the simplest decision rule, the most familiar face in
the lineup—that is, the face that generates the strongest memory signal
(i.e., the MAX signal)—is identified if it exceeds the decision criterion
(c). This simple model is known as the Independent Observations model
(Duncan, 2006; Macmillan & Creelman, 2005; Wixted, Vul, Mickes, &
Wilson, 2018).

A hit—also known as a correct ID—occurs when the MAX signal in a
target-present lineup is generated by the guilty suspect and exceeds the
decision criterion. A false alarm—also known as a false ID—occurs
when the MAX signal in a target-absent lineup is generated by the in-
nocent suspect and exceeds the decision criterion. A foil ID for either
lineup occurs if one of the foils happens to generate the MAX memory
signal in the lineup and the strength of that signal exceeds the criterion.
If none of the faces in the lineup generate a memory signal that exceeds
the criterion, no ID is made (i.e., the lineup is rejected).

Using a simultaneous lineup, if eyewitnesses have a conservative
decision criterion, both the hit rate and the false alarm rate will be low
(and will reach 0 in the limit), as will the foil ID rate. At the other
extreme, however, an infinitely liberal criterion will yield higher hit
and false alarm rates but will not yield hit and false alarm rates of 1.0,
as would be the case for a showup. So long as the identity of the suspect
is not highlighted (i.e., the lineup is fair and the administrator does not
provide any clue as to which photo is the suspect), the hit rate would be
unlikely to reach 1.0 because the liberal eyewitness must determine
which of the six faces in the target-present lineup is the perpetrator.
Thus, a liberal eyewitness who failed to form a strong memory of the
perpetrator would stand a good chance of landing on a filler. The false

Fig. 1. Simple equal-variance signal detection model. The distribution of foils
has a lower memory match signal on average than the distribution of targets
because the foils have not been previously seen, whereas the targets have been
previously seen. The vertical line represents one of many possible places where
the decision criterion is placed. An item generating a memory match signal
greater than the criterion will be identified as “old;” an item generating a
memory match signal lower than the criterion will be identified as “new.”
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alarm rate would also fall well below 1.0. In a fair target-absent lineup,
the maximum false alarm rate under extremely liberal responding
would be only 1/6=0.167. Despite these upper-bound constraints, it is
still true that the hit rate and the false alarm rate will monotonically
increase as eyewitnesses move from more conservative to more liberal
responding. The hit and false alarm rates generated by varying the
decision criterion, when plotted against each other, trace out the lineup
ROC curve.

ROC data, including lineup ROC data, can be generated in more
than one way, such as using different instructions across different
conditions to induce liberal, neutral, or conservative response biases.
For example, a liberal response bias could be induced by instructing
participants to choose the perpetrator even if they have to guess, a
neutral response bias could be induced by simply indicating that the
perpetrator may or may not be in the lineup, and a conservative re-
sponse bias could be induced by instructing participants not to make an
identification unless they were highly confident the person they were
selecting was actually the perpetrator. These conditions would yield
high, medium, or low hit and false alarm rates, respectively, and plot-
ting the hit rate vs. the false alarm rate would yield a 3-point ROC. This
type of ROC is often called a “binary” ROC (e.g., Dube & Rotello, 2012)
because the recognition decisions within a given condition are binary
(ID vs. no ID). Alternatively, and more commonly, confidence ratings
can be used to generate the ROC data from a single condition. Consider
a 3-point confidence scale for positive IDs of the suspect made with
high, medium, or low confidence. The conservative (leftmost) ROC
point would be obtained by counting only IDs made with high con-
fidence, the middle ROC point would be obtained by counting IDs made
with medium or high confidence, and the liberal (rightmost) ROC point
would be obtained by counting all IDs (made with high, medium, or low
confidence).

For decades, research from the basic memory and perception lit-
eratures has found that various strategies for generating ROC data tend
to yield the same (or at least similar) curves (e.g., Benjamin, Tullis &
Lee, 2013; Dube & Rotello, 2012; Koen & Yonelinas, 2011; Swets,
Tanner & Birdsall, 1961). Recently, Mickes et al. (2017) demonstrated
that the same2 is true for simultaneous lineup ROC data generated using
instructions or confidence ratings (i.e., the binary ROC was similar to
the ratings-based ROC). Fig. 2 reproduces their results, a ratings ROC
from confidence ratings (Fig. 2A) and a binary ROC from an instruc-
tional biasing manipulation with 4 conditions (Fig. 2B). The smooth
curve drawn through the data is the same for both plots. Although there
is some evidence for a reduction in discriminability for the extreme
biasing conditions in Fig. 2B, the ROC paths traced out using these two
methods are similar. The same is definitely not true for sequential
lineups.

A signal detection analysis of sequential lineups

The seemingly simple change from presenting photos simulta-
neously to presenting them sequentially (and with a stopping rule)
raises some surprisingly complicated theoretical and empirical issues.
Nevertheless, it is worth thinking through those complexities because
30% of U.S. law enforcement agencies have now adopted the sequential
procedure (Police Executive Research Forum, 2013). Given the applied
significance of this recognition memory procedure, it seems important
to understand how sequential lineups affect underlying (theoretical)
discriminability (d′) and, separately, empirical discriminability (i.e.,
area under the ROC, or AUC). Although d′ and AUC ordinarily agree
about the effect of an independent variable on discriminability, they are

capable of reaching opposite conclusions (Wixted & Mickes, 2018). As
shown later, the sequential procedure can yield that unusual outcome.

Prior signal detection analyses of the sequential procedure
There is already reason to believe that much of what we commonly

understand about ROC analyses of recognition memory breaks down
with a sequential lineup. Using a signal detection model, Rotello and
Chen (2016) simulated ROC data generated by the sequential proce-
dure. As noted above, the simplest version of the model for simulta-
neous lineups relies on a MAX decision rule according to which the face
in the lineup that generates the strongest memory signal is identified if
the strength of that signal exceeds a decision criterion. For the se-
quential procedure, by contrast, a first-above-criterion decision rule is
used because of its stopping rule. That is, the first face that generates a
memory signal strong enough to exceed the criterion is identified, ter-
minating the procedure.

Rotello and Chen (2016) showed that the constraints in a sequential
lineup introduced by the stopping rule are such that changing the
overall decision criterion from liberal to conservative across conditions
(i.e., generating binary ROC data) traces out an unusual curve. This
curve does not increase monotonically (as the one in Fig. 2B does) but
instead increases at first and then decreases towards the diagonal line of
chance performance. What explains that pattern? Consider, for ex-
ample, a group of eyewitnesses instructed to use an infinitely con-
servative criterion. These eyewitnesses never make an identification so
the hit rate and false alarm rate would both be 0, as it would be for any
signal detection task. Next consider the opposite extreme, namely, a
group of eyewitnesses instructed to use an infinitely liberal decision
criterion. Because these witnesses are always going to make an

Fig. 2. Confidence-based ROC data (A) and ROC data resulting from different
biasing instructions (B) in Mickes et al. (2017).

2 Mickes et al. (2017) found that discriminability was somewhat reduced
when biasing instructions were intended to make people extremely liberal or
conservative, theoretically due to increased criterion variability across parti-
cipants.

B.M. Wilson et al.



identification regardless of the strength of the memory signal generated
by a test item, they will always identify the first face in the lineup,
thereby terminating the procedure at that point. For a subset of these
infinitely liberal witnesses, the suspect will have been randomly as-
signed to appear in position 1. A guilty suspect in position 1 will always
be correctly identified by this subset of liberal eyewitnesses. Similarly,
an innocent suspect in position 1 will always be incorrectly identified.

Of course, the suspect will not always appear in the first position.
For other witnesses, the suspect will appear somewhere in positions 2
through 6. When the suspect is placed in those positions, the stopping
rule is such that infinitely liberal eyewitnesses will have no opportunity
to make any additional identifications, having already identified a filler
in position 1. If we assume that there is an equal probability of the
suspect appearing in any of the six positions, this means that a group of
eyewitnesses with an infinitely liberal criterion will have hit and false
alarm rates of 1/6≈ 0.167. Thus, the instruction-based binary ROC for
a fair sequential lineup ranges from [0, 0] when an infinitely con-
servative criterion is used to [0.167, 0.167] when an infinitely liberal
criterion is used.

As shown by Rotello and Chen (2016), for intermediate settings of
the criterion, the ROC will bow up and away from the diagonal line of
chance performance: the sequential binary ROC curve is non-mono-
tonic. Fig. 3 reproduces results shown in Fig. 6 of Rotello and Chen
(2016). The figure shows the predicted ROC curves for simultaneous
and sequential lineups using an equal-variance model with d′ = 1.5 as
the criterion is swept over the full range from liberal to conservative.
Note that despite the equivalence in underlying d′, the area under the
ROC would be quite different for the two procedures (Wixted & Mickes,
2018), clearly favoring the simultaneous procedure. Thus, even if d′
were the same for the two procedures, then, according to this model, it
would be a mistake for the police to believe that it would make sense to
adopt the sequential procedure. For any given false alarm rate, the si-
multaneous procedure would be able to achieve the same or higher hit
rate. Critically, this reduction in area under the ROC is not due to re-
duced psychological (i.e., underlying) discriminability; it arises entirely
from the physical constraint imposed by the standard first-identifica-
tion-only stopping rule.

The unusual sequential ROC simulated by Rotello and Chen (2016)
sets the stage for the detailed theoretical and empirical analysis of the
sequential procedure that we report here. To guide our inquiry into
these issues, we also rely on a simple signal detection model using a
first-above-criterion decision rule to generate predictions about se-
quential performance. Later, we report the results of two large-N ex-
periments to test whether the predictions made by Rotello and Chen
(2016) and the additional predictions we generate next are accurate.
The parameters used in our simulations are set to approximate the

empirical data we consider later. To begin, following Rotello and Chen,
we use a signal detection model of binary ROC data in which a different
decision criterion is used in each of several different conditions (e.g., as
could be achieved using different instructions across conditions).

Fig. 4A illustrates this simple equal-variance3 signal detection
model, with d′ = 1.74, and with the decision criteria set to be liberal
(c=−0.25), neutral (c=0.93), or conservative (c=1.75). As we
earlier assumed for the simultaneous procedure, the model assumes

Fig. 3. Simulated ROC data for the simultaneous and sequential lineup proce-
dure as shown in Rotello and Chen (2016).

Fig. 4. (A) Simple signal detection model with three different criteria used to
simulate the ROC curves shown in B and C. (B) The binary ROC data that result
from this simulation. (C) The confidence-based ROC data that result from this
simulation.

3 In analyzing our data, we will allow for an unequal variance model in order
to better fit the data. However, this change does not substantively affect any of
our model predictions. Although there is nothing special about the particular c
values used, we chose them because they result in approximately the same
overall false alarm rates that were observed in our empirical data presented
later.
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that for each face in a target-present lineup, one value is randomly
drawn from the target distribution (the guilty suspect) and five values
are randomly drawn from the foil distribution, and for each face in a
target-absent lineup, six values are randomly drawn from the foil dis-
tribution. However, in contrast to a simultaneous lineup, the six values
for a given sequential lineup are individually compared against a preset
criterion in the order in which they were randomly sampled. If one of
these memory-match values exceeds the criterion, an ID is made and
the test is terminated (i.e., a first-above-criterion decision rule was
used). Hit and false alarm rates are computed in the manner described
earlier for the simultaneous procedure. That is, the hit rate is the pro-
portion of all target-present lineups in which eyewitnesses identified
the guilty suspect, and the false alarm rate is the proportion of all
target-absent lineups in which they identified an innocent suspect. For
the time being, we ignore foil IDs, though they are always taken into
consideration when fitting signal detection models to lineup data (si-
multaneous or sequential). Because this simulation was performed in
the same manner as the one performed by Rotello and Chen (2016), it is
not surprising that it yielded a non-monotonic ROC similar to the one
they reported. Fig. 4B shows the predicted binary ROC points, and it
clearly traces out a non-monotonic path. However, as we explain next,
there is more to the surprising story of how the stopping rule affects
ROC data generated by the sequential procedure.

One binary ROC yields multiple confidence-based ROCs
Whereas Fig. 4B reproduces what has been shown before, Fig. 4C

shows another unusual feature of sequential ROC data. More specifi-
cally, Fig. 4C shows the confidence-based ratings ROC associated with
each instruction-based binary ROC. The rightmost point of each rating’s
ROC in Fig. 4C is the same as the corresponding point on the binary
ROC in Fig. 4B. Consider, for example, subjects assigned to the liberal
instructional biasing condition (leftmost criterion in Fig. 4A). Their
overall hit and false alarm rates would correspond to the rightmost ROC
point in Fig. 4B, but if those subjects were asked to provide confidence
ratings, their confidence-based ROC would correspond to the lowest
curve in Fig. 4C. For subjects assigned to the conservative instructional
biasing condition (rightmost criterion in Fig. 4A), their overall hit and
false alarm rates would correspond to the leftmost ROC point in Fig. 4B.
However, if they were asked to provide confidence ratings, their con-
fidence-based ROC would correspond to the highest ROC in Fig. 4C. In
other words, each between-condition, binary ROC point has its own
unique confidence-based ROC.

If we performed this exact same simulation for the simultaneous
lineup wherein the overall criterion is either liberal, neutral, or con-
servative, all three confidence-based ROCs would fall on top of one
another. In other words it would look like a single ROC curve as it does
for the simultaneous lineup in Fig. 3. However, unlike all other cases
that we are aware of, for the sequential procedure, a singular binary
ROC (like in Fig. 4B) does not have a corresponding singular con-
fidence-based ROC. Instead, there is one confidence-based ROC for each
binary ROC point, as depicted in Fig. 4C, where the dotted lines cor-
respond to the binary ROC in Fig. 4B. To our knowledge, this dis-
sociation between confidence-based and binary ROC data is unique to
the sequential procedure.

Although we illustrated this issue with respect to hypothetical in-
struction-based binary ROCs vs. confidence-based ratings ROCs, the
same issue can be illustrated using data from the neutral response
biasing condition only. We do so next because it corresponds directly to
how we later analyze empirical data obtained using the sequential
procedure. Fig. 5 shows a confidence scale ranging from -100 (sure the
face was not seen) to +100 (sure this is the face of the perpetrator). In a
sequential lineup procedure, the witness can be asked to provide a
confidence rating using this scale for each face in the lineup. The
standard stopping rule—but not the only possible stopping rule—sti-
pulates that any positive ID associated with a confidence rating greater
than 0 terminates the procedure (such that any IDs of subsequent faces

in the lineup would not count). The confidence-based ROC for positive
suspect IDs in the neutral condition would correspond to the middle
ROC curve shown in Fig. 4C.

Given the continuous nature of the confidence scale shown in Fig. 5,
it should be clear that defining the stopping rule to consist of any ID
greater than 0 is an arbitrary decision. Indeed, using that same set of
data from the neutral condition, one could specify a different decision
criterion for counting positive IDs in separate analyses, with each
analysis corresponding to a different stopping rule. For example, a
conservative criterion could be specified by counting only IDs made
with a confidence rating of 80 or more. Moving the criterion from 0 to a
more conservative setting of 80 for either showups or simultaneous
lineups would simply move the ROC point to the left on the same ROC
(i.e., the ROC curve itself would not change). In fact, this is precisely
how a conservative ROC point would be generated for a confidence-
based ROC. However, given the nature of the stopping rule, setting a
more conservative criterion for the sequential lineup has additional
consequences: IDs made in an earlier sequential position with a con-
fidence rating of less than 80 would no longer cancel subsequent IDs
because those earlier IDs would now be treated as effective non-IDs.
The resulting confidence-based ROC for this conservative decision rule
would cover a narrower range (i.e., the maximum hit and false alarm
rate would be lower) and would also be elevated compared to the
neutral ROC curve, as shown in Fig. 4C. Similarly, setting the decision
criterion to −80 (a very liberal position) has the opposite effect, low-
ering and extending the confidence-based ROC to the right.

In the empirical analyses we present later, we analyze the data in
this manner. That is, we analyze data from a sequential ROC study that
used neutral instructions and collected confidence ratings using a scale
like that shown in Fig. 5. In real-world scenarios, the police could opt to
establish binary decision criteria in the same way that we did as long as
they collected confidence for each ID. For example, neutral Jurisdiction
A (the typical case) might use the most intuitive rule and count any ID
made with a confidence rating greater than 0. By contrast, conservative
Jurisdiction B might decide not to count an ID unless it was made with a
confidence rating greater than 80 (in hopes of reducing misidentifica-
tions of the innocent), whereas liberal Jurisdiction C might decide to
count any ID made with a confidence rating greater than−80 (in hopes
of increasing correct identifications of the guilty). If they could be
measured, the hit and false alarm rates from these three jurisdictions
would create a 3-point binary ROC. Yet each binary ROC point would
have its own separate confidence-based ROC.

Sequential position effects
The story of confidence-based ROCs generated using the sequential

procedure becomes even more complicated (and more surprising) when
we consider the ROC curves separately by suspect position (i.e., where
the suspect appears in the sequence of six faces). For the simulated
analyses presented thus far, suspects were randomly assigned to posi-
tion and the data were aggregated across position. This corresponds to

Fig. 5. Confidence scale ranging from −100 (sure the face was not seen) to
+100 (sure this is the face of the perpetrator). The overall criterion for
counting an ID, thereby canceling any later IDs that might occur in the lineup,
can be set to a liberal, neutral, or conservative point on the confidence scale.
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how sequential ROC data have been plotted in previous empirical re-
search (e.g., Mickes, Flowe, & Wixted, 2012). However, the simple
signal detection model can also predict ROC curves separately for trials
in which the suspect (innocent or guilty) appears in position 1, position
2, position 3, and so on.

We used the first-above-criterion signal detection model in a simu-
lation to investigate position effects by first assigning the suspect (either
innocent or guilty) to a randomly selected position (1 through 6) and
then determining the probability that the suspect would be identified,
separately for each position. If, for example, the suspect was randomly
assigned to position 3, the probability of a suspect ID would be the
probability that a foil memory strength did not exceed the neutral de-
cision criterion in either position 1 or position 2 times the probability
that the suspect memory strength in position 3 did exceed the neutral
decision criterion. If no filler IDs happen to occur in the first two po-
sitions and a suspect ID is made in position 3, the corresponding con-
fidence rating is determined by the highest confidence criterion ex-
ceeded by the memory strength of the suspect. Keep in mind that the
suspect memory strength will sometimes far exceed the decision cri-
terion (and will be the MAX face in the lineup) but will not be identified
because a preceding filler memory strength also exceeded the criterion,
even if only slightly. This is the constraint imposed by the stopping rule.

Fig. 6A shows the six separate position-specific ROC curves for the
neutral response bias condition, as predicted (via simulation) by the
first-above-criterion signal detection model. As suspect position in-
creases from 1 to 6, each successive rightmost ROC point—that is, each
successive overall hit and false alarm rate—falls below the ROC for the
immediately preceding position (not on the same ROC), and also moves
to the left. Thus, for a given false alarm rate (e.g., false alarm
rate= 0.05), the area under the ROC decreases with increasing suspect
position.

As noted above, the overall hit and false alarm rates both decrease
as suspect position increases because foil IDs that occur in earlier po-
sitions remove opportunities to make suspect IDs in later positions. The
position-specific ROC data would not seem at all unusual if the reduc-
tion in the overall hit and false alarm rate with increasing sequential
position were such that the resulting ROC point fell on a more con-
servative location on the ROC for the preceding position. In that case,
the effect of foil IDs made in earlier positions (canceling opportunities
to make suspect IDs in later positions) would be the effective equivalent
of adopting a more conservative decision criterion. However, as the
innocent and guilty suspects are placed later in the lineup, the overall
correct and false alarm rates instead drop to a more conservative lo-
cation on a lower ROC. To remain on the same ROC but at a more
conservative location, the false alarm rate would have to decrease to a
proportionately greater extent than the hit rate decreased. This is just
another way of saying that the diagnosticity ratio (hit rate/false alarm
rate) increases as responding becomes more conservative while holding
discriminability constant (i.e., while staying on the same ROC). Indeed,
that property of the DR—namely, that it increases with more con-
servative responding while holding discriminability constant—is why it
was a mistake for the field to once rely on that measure to proclaim a
sequential superiority effect. However, as the position of the suspect in
the sequential lineup increases, the stopping rule does not reduce hit
and false alarm rates in the same way that using a more conservative
decision criterion does. Instead, foil IDs that occur in earlier sequential
positions cancel opportunities to make later suspect IDs to an equal
extent for innocent and guilty suspects. For example, if the innocent and
guilty suspects are in position 2, and if 25% of witnesses ID a foil in
position 1 for both target-present and target-absent lineups (which, at
position 1, are identical), then, all else being equal, both the hit rate and
the false alarm rate will decrease by 25% compared to position 1.
Table 1 shows the overall hit and false alarm rates (i.e., the rightmost
ROC points) and their corresponding diagnosticity ratios for the simu-
lated ROC curves shown in Fig. 6A. Although the hit and false alarm
rates drop dramatically with increasing position (because opportunities

Fig. 6. Simulated ROC data when the suspect appears in each of the six posi-
tions in the lineup when responding is neutral (A), liberal (B), or conservative
(C).

Table 1
Overall hit and false alarm rates (i.e., the rightmost ROC points) and their
corresponding diagnosticity ratios for the simulated ROC curves shown in
Fig. 6A.
Position HR FAR DR

1 0.79 0.18 4.39
2 0.65 0.15 4.33
3 0.54 0.12 4.50
4 0.44 0.10 4.40
5 0.36 0.08 4.50
6 0.30 0.06 5.00
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to make a suspect ID steadily decrease), the diagnosticity ratio for each
rightmost ROC point remains roughly constant at about 4.5, which
further illustrates why the DR is not an appropriate measure of dis-
criminability. Empirical discriminability is clearly decreasing with
suspect position in these simulated data (despite underlying d′ re-
maining constant), yet the DR misses that fact.

As a practical matter, the theoretical data in Fig. 6A suggest that if
the police always placed the suspect in position 6, for example, they
would achieve what appears to be a desirable outcome (namely, a low
false alarm rate, protecting the innocent), but the cost would be a
dramatic reduction in empirical discriminability. Indeed, one could
achieve both a lower false alarm rate and a much higher hit rate by
instead placing the suspect in position 1 and using a more conservative
location on the confidence scale as the criterion for counting an ID. For
example, in Fig. 6A, the fifth point from the right on the position 1 ROC
has a hit rate of 0.56 and a false alarm rate of just under 0.06. This has
both a higher hit rate and a lower false alarm rate than the overall hit
rate of 0.30 and false alarm rate of 0.07 when the suspect is instead
placed in position 6.

The interaction of response bias and position effects
Earlier, we replicated simulations performed by Rotello and Chen

(2016), showing that according to a simple signal detection model, for a
given d′, the binary ROC generated by manipulating response bias is
non-monotonic (Fig. 4B). In addition, we just showed that according to
the same model, the confidence-based ROC changes as a function of
sequential position. Thus, according to this model, both the overall
decision criterion and, separately, the sequential position of the suspect
within the lineup affect the empirical ROC. We now show that these
two effects (the effect of the placement of the overall decision criterion
and, separately, the effect of suspect position) theoretically interact
with each other.

As shown in Fig. 6B, sequential position effects become even more
exaggerated when a liberal criterion is used (the criterion placed at
−80 in Fig. 5). If eyewitnesses use a liberal criterion, it is very likely
that one of the fillers in the first or second position will exceed the
decision criterion. This makes it almost impossible for witnesses to ever
have the opportunity to identify a face presented later in the lineup. By
contrast, Fig. 6C shows that position effects are minimized when a
conservative criterion is used (the criterion placed at 80 in Fig. 5). This
is because foil identifications are much less likely to occur, which al-
lows witnesses to have the opportunity to identify suspects appearing
later in the lineup.

Note that the number of confidence-based ROC points decreases as
the overall decision criterion becomes more conservative. For example,
when placed at a very conservative position (80), only 2 confidence-
based ROC points—namely, IDs made with confidence greater than 80
and IDs made with confidence greater than 90—can be computed.
When placed at a very liberal position (−80), as many as 18 con-
fidence-based ROC points can be computed.

As can be observed in Fig. 6A–C, empirical discriminability is
highest when the innocent and guilty suspects appear in the first po-
sition of the lineup and lowest when they appear in the last position
(though this effect is minimized for the conservative condition). When
the suspect appears in the first position, the sequential lineup is theo-
retically equivalent to a showup. In fact, if the police always placed the
suspect in position 1, the procedure would presumably differ from a
showup only in that witnesses might adopt a more conservative deci-
sion criterion, knowing that additional photos will be shown if no ID is
made for the first photo. If the police instead always placed the suspect
in a later position, the basic signal detection model predicts that em-
pirical discriminability should be reduced relative to a showup. The
predicted reduction in discriminability is due entirely to the structural
constraints of the first-identification-only stopping rule and does not
imply that psychological discriminability (i.e., d′, the ability to tell the
difference between innocent and guilty suspects) necessarily changes as

the lineup progresses. The question of how psychological discrimin-
ability changes (or not) as a function of sequential position is an in-
dependent issue, and we turn to a consideration of that issue next.

The effect of sequential position on psychological discriminability (d′)
Previous research suggests that, even in the absence of a structural

constraint, psychological discriminability might change as a function of
sequential testing position. For example, studies using standard list-
learning paradigms have found that recognition memory performance
tends to decline as a function of test trials (Criss, Malmberg, & Shiffrin,
2011; Murdock & Anderson, 1975; Peixotto, 1947). Osth, Jansson,
Dennis, and Heathcote (2018) recently explored this phenomenon and
found that it was primarily due to prior test items causing the con-
textual representation that cues memory to drift. Declining perfor-
mance over the course of testing might also occur because of test-item
interference and/or changes in speed-accuracy thresholds for later test
trials. Regardless of which explanation applies, this line of research
suggests that underlying discriminability might, if anything, decrease as
sequential position of the suspect in a lineup increases. If so, sequential
lineups would be worse than showups because both psychological
factors and structural constraints would contribute to lower perfor-
mance for later positions.

Another theory predicts that psychological discriminability might
increase as a function of sequential position. Any such improvement in
psychological discriminability would serve as a countervailing force
against the structural constraints that lower performance for later po-
sitions. Diagnostic feature-detection theory (Wixted & Mickes, 2014)
holds that seeing faces that match the general description of the suspect
teaches eyewitnesses which features are unlikely to be helpful for
making an identification—namely, the features that are common to
everyone in the lineup. These common features are the ones that were
central to constructing the lineup in the first place (i.e., the selection of
physically similar foils who all correspond to the description of the
perpetrator). Precisely because these features are shared, taking them
into consideration would reduce the ability of witnesses to distinguish
between innocent and guilty suspects, whereas discounting those fea-
tures would have the opposite effect and enhance discriminability.

Diagnostic feature-detection theory was advanced to explain why
simultaneous lineups typically yield a higher ROC than sequential
lineups, even when responding is conservative (such that constraints
imposed by the stopping rule are minimized), as it was in Mickes et al.
(2012). When faces are presented simultaneously, it is easier to detect
(and then discount) non-diagnostic facial features than when faces are
presented sequentially. When the suspect appears in the first position,
there is no possibility of learning what features are diagnostic, but as
the sequential lineup unfolds, the theory predicts that the same phe-
nomenon should eventually emerge. Thus, if one assumes that faces
need not be presented simultaneously for participants to notice and
discount non-diagnostic features, the prediction would be that psy-
chological d′ should increase with increasing sequential position, an
effect that could be easily masked by the large constraints on the em-
pirical ROC imposed by the stopping rule.

Previous research on how memory performance changes as a
function of sequential position has not distinguished between empirical
and psychological discriminability. Doing so requires both computing
area under the ROC to measure empirical discriminability and fitting a
model to the ROC data to measure psychological discriminability.
Instead, only measures of empirical performance—the diagnosticity
ratio originally and, later, partial area under the ROC—have been used.
Moreover, the results have been somewhat inconsistent. Carlson,
Gronlund, and Clark (2008) found that the diagnosticity ratio increased
for later positions of the sequential lineup, which is consistent with
increasing discriminability but might instead simply reflect con-
servative responding as a function of lineup position. For example, a
similar explanation in terms of conservative responding has been pro-
posed to explain the effect of providing a verbal description of a face
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(Clare & Lewandowsky, 2004). Theoretically, providing a verbal de-
scription allows people to realize that the task is challenging, which
causes them to behave more cautiously in their subsequent responding.
Critically, this more conservative responding can occur whether or not
discriminability is affected (Wilson, Seale-Carlisle, & Mickes, 2018).

In a study that reported more convincing evidence of suspect posi-
tion on discriminability, Gronlund et al. (2012) performed ROC analysis
when the suspect appeared in either the second or fifth position of a
sequential lineup. They found that empirical discriminability (mea-
sured as partial area under the ROC curve) was significantly higher for
position five than position two, as predicted by the diagnostic feature-
detection theory. Given the constraints imposed by the stopping rule
(which, if anything, create a force in the opposite direction), this result
indicates that underlying discriminability must have increased for later
positions. However, a position effect on empirical discriminability
measured by partial area under the ROC was not observed in other
studies of the sequential procedure (Carlson & Carlson, 2014; Dobolyi &
Dodson, 2013). Thus, the empirical picture is mixed. Given that there is
some theoretical reason to believe both that d′ should increase with
sequential position (due to diagnostic feature detection) and that area
under the curve should decrease with sequential position (because of
structural constraints imposed by the stopping rule), a mixed empirical
literature may be unsurprising. What is somewhat surprising is that
evidence of a decreasing area under the curve with increasing se-
quential position (Fig. 6A) has never been empirically observed. How-
ever, we observed it in the study described next. Moreover, the very
same data provided evidence that despite the decreasing area under the
curve with increasing sequential position, d′ changed in the opposite
direction.

Experiment 1

The first experiment was a large-N investigation of eyewitness
identification performance using a sequential lineup. Many participants
were tested so that the data could be productively analyzed separately
by sequential position. Each participant first watched a simulated crime
video and then attempted to identify the perpetrator from a 6-member
sequential lineup. All participants were presented with (and supplied
confidence ratings for) all 6 faces in the lineup, which allowed us to
specify different stopping rules. We created different points on the
“binary” ROC by setting a different confidence criterion for counting an
ID (namely, IDs with a confidence rating>−80,> 0, or> 80), as il-
lustrated in Fig. 5.

Method

Participants

A total of 7174 subjects were tested using MTurk, but some an-
swered the attention-check question incorrectly and were excluded,
leaving a total of 6530 participants. Of those, 3258 were presented with
a target-present lineup and 3272 with a target-absent lineup.
Participants were each paid $0.25 for completing the task.

Materials and procedure

All participants watched an eight-second video of a woman spray-
painting graffiti. Participants then completed a distractor task (un-
scrambling the names of ten U.S. states) for approximately 2min before
beginning the sequential lineup test. Just prior to the lineup, partici-
pants received neutral identification instructions (indicating that the
target from the video may or may not be in the lineup) and were also
instructed on how to use the confidence scale. Participants were ran-
domly assigned to only one lineup test—either a target-present sequen-
tial lineup or a target-absent sequential lineup. The target-present
lineups contained a photo of the suspect (the woman in the video) and

five filler photos, which were randomly selected from a set of 113 de-
scription-matched photos. The position in which the suspect appeared
was randomized. Target-absent lineups consisted of six filler photos,
again randomly selected from the set of 113. All participants were
shown each photo one at a time. For each face, they were asked whe-
ther or not it was the woman from the video, and to indicate their level
of confidence using a scale from −100 to 100 (Fig. 5). Note that par-
ticipants were asked to provide a confidence rating for all 6 faces,
which means that the procedure was not actually terminated if a face
was identified early in the sequence. As is typically true, participants
were not told how many faces they could expect to see, and they were
not told that only their first ID would count.

Results

Data are available at osf.io/bq5y7. Initially, we simply plotted the
ROC data aggregated over sequential position. Later, we plot the data
separately by position and also analyze the data by fitting a signal
detection model. We begin by plotting the binary ROC, generating
different binary ROC points by setting a different decision criterion on
the confidence scale. As a reminder, if a simultaneous lineup or a
showup were used, creating ROC data using this approach (instead of
using instructions to manipulate the criterion across conditions, for
example) would simply trace out the confidence-based ROC. That is, in
fact, how the confidence-based ROC is typically created. However,
because the sequential procedure uses a stopping rule, the binary
analysis (i.e., using confidence ratings to set the value above which an
ID is counted but otherwise ignoring differences in confidence) is not
identical to computing the confidence-based ROC.

Binary ROC data
The most common way to analyze sequential ROC data is to count

any ID that occurs with a confidence rating greater than 0. If a filler ID
with a confidence rating greater than 0 occurs first, the rest of the trial
is effectively canceled, so neither the innocent suspect nor the guilty
suspect will be identified by that witness. If a suspect ID occurs first,
then it is counted as a hit if the suspect is guilty and counted as a false
alarm if the suspect is innocent. The total number of target-present and
target-absent lineups can be denoted nTP and nTA, respectively. In our
study, nTP=3258, and nTA=3272. Across all lineups, the total
number of hits and false alarms can be denoted nH and nFA. From these
values, an overall (binary) hit and false alarm rate (HR and FAR, re-
spectively) can be computed, where HR= nH/nTP and FAR= nFA/
nTA. In our study, nH=1687, so HR=1687/3258=0.518. Because
we did not have a designated innocent suspect in target-absent lineups,
we estimated nTA (the number of false IDs of innocent suspects) by
dividing the total number of first foil IDs in target-absent lineups (2229)
by the lineup size of 6, such that nTA=2229/6= 371.5. Thus,
FAR=371.5/3272=0.114. Approximately the same FAR would be
obtained if we instead randomly selected one foil on each target-absent
lineup to serve as the designated innocent suspect. This HR, FAR pair
(0.518, 0.114) constitutes one point on the binary ROC plot, the one
that corresponds to a neutral response bias. However, as noted earlier,
one can use a more liberal or a more conservative criterion for counting
IDs. We next reanalyzed the data using a liberal criterion by counting
an ID if it was accompanied by a rating greater than −80. Thus, for
example, if a face was rejected with a confidence rating of−70, it was
now scored as a positive ID, but if a face was rejected with a rating of
−90, it was still scored as a non-ID. Using this liberal decision rule
allowed us to compute a second pair of overall hit and false alarm rates
(i.e., a second binary ROC point). Finally, we reanalyzed the data again,
this time under a conservative criterion—only counting an ID if it was
accompanied by a rating of more than 80 (yielding a third binary ROC
point). The binary ROC data are presented in Fig. 7A. It is clear that
they closely resemble the data generated earlier using a signal detection
model (Fig. 4B).
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These are the first empirical data that correspond to the non-
monotonic sequential ROC predicted by Rotello and Chen (2016). Thus,
the results lend validity to their signal detection-based analysis. How-
ever, we did not actually manipulate the decision criterion across
conditions (e.g., by using conservative, neutral or liberal instructions).
If the overall decision criterion were successfully manipulated in that
manner, there is no reason to expect that the results would differ in any
appreciable way, but a definite answer would have to await further
research. Keep in mind that the way we did choose to manipulate the
overall decision criterion is an approach that is available to the police to
use, should they wish to. For example, a particular jurisdiction could
choose to adopt the sequential lineup procedure and to count only IDs
made with relatively high confidence in an effort to reduce false IDs.

Confidence-based ROC data
For each of the overall criterion settings used for the binary analysis,

we can also plot a confidence-based ROC, as we did earlier using si-
mulated data based on a simple first-above-criterion signal detection
model (Fig. 4C). Fig. 7B displays the empirical data computed the same
way, and the predicted pattern was largely confirmed. Note that the
neutral condition corresponds to how sequential ROC data have been
plotted and analyzed in the past. However, although it seems natural,
there is nothing inherently special about this particular criterion pla-
cement. If we wanted to know what empirical discriminability would be
for identifications made with only higher levels of confidence, we could
count only positive identifications that had been made with a con-
fidence level of (for example)> 80. For a more liberal criterion, we
could create a liberal curve by counting any decision made with a
confidence level of>−80. Again, normally (i.e., with simultaneous
lineups or showups), this approach would simply yield another point on
the same ROC curve generated using a neutral response criterion. What
is strange about the sequential lineup, however, is that the specific
criterion placement changes whether or not one counts IDs made later
in the lineup. As responding becomes more liberal, eyewitnesses

increase the chances that they will make an incorrect identification on
an earlier foil and not be permitted to identify a suspect that appears
later in the lineup. This is why the three confidence-based ROCs shown
in Fig. 7B differ from each other (though the neutral and conservative
ROCs are close).

The data shown in Fig. 7B largely correspond to what we predicted
using a simple signal detection model (Fig. 4C), though the data from
the neutral and conservative analyses are closer than expected. These
results raise the possibility that, unlike with the simultaneous lineup, if
two studies happened to differ only with respect to how liberal or
conservative the participants were, their confidence-based ROC data
would fall on different curves for that reason alone (i.e., even if

Fig. 7. (A) The empirical binary ROC curves for the results of Experiment 1. (B)
The empirical confidence-based ROC curves for the results of Experiment 1.

Fig. 8. Empirical ROC curves from Experiment 1 when the suspect appears in
each of the six positions in the lineup when responding is neutral (A), liberal
(B), or conservative (C).
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underlying d′ were the same in both studies).

Sequential position effects
Fig. 8A shows the confidence-based sequential ROC data using the

neutral decision criterion computed separately by position. Clearly, as
predicted earlier using a simple signal detection model (Fig. 6), the area
under the ROC steadily decreases as position increases. To compare
empirical discriminability across positions, partial area under the curve
(pAUC) analyses must be conducted because none of the ROCs cover
the full range of false ID rates. A common approach is to compare the
pAUCs over the false ID rate range covered that is in common between
the two conditions (i.e., over the range covered by the shorter of the
two ROCs). Using the false ID rate range covered by the position 6 data,
the difference in empirical discriminability between position 1
(pAUC=0.013) and position 6 (pAUC=0.010) was significant,
D=2.02, p= .044. The effect is barely significant only because so
much of the position 1 data is excluded from this analysis. For example,
using the larger false ID rate range covered by the position 3 data, the
difference between position 1 (pAUC=0.060) and position 3
(pAUC=0.050) was more convincingly significant, D=2.56,
p= .010.

Table 2 shows the overall HR and FAR (i.e., rightmost ROC point)
and the DR for each position. As predicted earlier (Table 1), the DR
remains essentially constant. This result illustrates the importance of
not relying on the DR as a measure of discriminability. Had this been
the primary dependent measure in our experiment, it would appear as
though the sequential lineup does not suffer from position effects de-
spite the existence of rather large position effects in the ROC data. In
fact, the prior use of the DR may explain why the field once came to the
apparently mistaken conclusion that the sequential procedure is not
compromised by position effects (Lindsay & Wells, 1985).

Fig. 8B shows that the effect of position is magnified using a liberal
decision criterion (counting any ID greater than −80). When a liberal
criterion is used, most of the IDs will occur in position 1 (whether it is a
foil or a suspect). Because almost all suspects appearing in position 1
will be identified, the hit and false alarm rates approach the upper right
corner of the ROC (as they would in a showup). However, because foils
appearing in position 1 will also almost always be identified, there are
very few opportunities to identify suspects in positions 2 through 6;
hence the dramatic drop in the ROCs for those positions.

Finally, as predicted in the signal detection-based simulations we
presented earlier, position effects are minimized when a conservative
criterion is used—that is, by counting IDs only if confidence exceeded
80 (Fig. 8C). Note that the sequential procedure often does induce a
conservative overall response bias. For example, in Experiment 1a of
Mickes et al. (2012), the overall false alarm rate for the sequential
procedure was 0.049. Thus, in many experiments, substantial position
effects might not be expected. Here, however, the overall false alarm
rate was 0.11 (i.e., responding was relatively liberal), which permitted
large position effects to emerge. It is not clear why studies differ in the
overall false alarm rate, but the fact that they do suggests that their
empirically-measured discriminability results (in terms of partial area
under the ROC) could differ in substantial ways for that reason alone.

Basic model fits
In an earlier investigation of sequential position effects, Horry,

Palmer, and Brewer (2012) found that when participants were unaware
of how many photos would be shown (their “backloading” conditions),
not only did the DR remain constant for positions 2 vs. 6 (see their
Table 1), as we found here (Table 2), but so did underlying psycholo-
gical discriminability (d′). However, instead of performing ROC ana-
lysis, they computed d′ from a point estimate of the overall correct and
false ID rates using a version of signal detection theory that assumes an
“integration” decision rule (Duncan, 2006). The integration model
holds that participants choose the MAX face in the lineup if the sum of
the memory signals generated by the 6 faces in the line exceeds a de-
cision criterion. Recently, Wixted et al. (2018) found that the integra-
tion model generally provides an extremely poor fit to empirical ROC
data from simultaneous lineups (see also Colloff, Wade, Strange, &
Wixted, 2018), and they recommended that the field finally abandon
that model. Moreover, as noted by Kaesler, Semmler, and Dunn (2017),
another problem with the integration model, as it has been used in the
past, is that it is not cognizant of the stopping rule and so may not
provide a viable estimate of d′ for that reason alone (i.e., even if the
integration decision rule were viable, which it does not appear to be).

We next fit a signal detection model to the full set of data, collapsed
across position. Importantly, we did not fit the Independent
Observations model, according to which the face that generates stron-
gest memory signal is identified so long as it exceeds the decision cri-
terion (a model that makes sense for the simultaneous procedure).
Instead, we fit the first-above-criterion model specified by Kaesler et al.
(2017). This model is the appropriate signal detection model for a se-
quential lineup in which only the first positive ID counts. This model
has up to 7 free parameters: µTarget, σTarget (both illustrated in Fig. 1),
and 5 confidence criteria (c1 through c5), corresponding to IDs made
with confidence ratings> 0,> 20,> 40,> 60, and >80. By conven-
tion, µFoil and σFoil were set to 0 and 1, respectively. The model was fit to
the data using maximum likelihood estimation. We fit the model twice,
first assuming a 6-parameter equal-variance model and then allowing
for σTarget to differ from σFoil. Goodness-of-fit was quantified by com-
puting a χ2 value for the observed and predicted IDs for each level of
confidence (and for observed and predicted non-IDs) for both target-
present and target-absent lineups. The results are shown in Table 3.
Clearly, an unequal-variance model (χ2 = 24.0) fit the data much
better than an equal-variance model (χ2 = 107.5), χ2(1) = 83.5,
p < .001, with the standard deviation of the target distribution esti-
mated to be less than that of the lure distribution (i.e., σTarget<1). This
is in contrast to what is commonly observed in studies of list memory,
where σTarget is usually greater than 1.0, with a typical value being 1.25
(e.g., Egan, 1958; Ratcliff, Sheu, & Gronlund, 1992; Wixted, 2007).

Why would the model yield an estimate of σTarget less than 1? One
possibility is that it reflects the fact that although every subject saw the
same target (namely, a photo of the person seen in the mock crime
video), the fillers were randomly drawn from a large pool of

Table 2
Overall hit and false alarm rates (i.e., the rightmost ROC points) and their
corresponding diagnosticity ratios for the empirical ROC curves shown in
Fig. 8A.
Position HR FAR DR

1 0.82 0.18 4.56
2 0.64 0.13 4.92
3 0.54 0.13 4.15
4 0.47 0.11 4.27
5 0.34 0.07 4.86
6 0.29 0.05 5.80

Table 3
Optimal parameter estimates for the fits of the equal-variance and unequal-
variance signal detection models to the data (collapsed across positions) from
Experiment 1.
Parameter Equal Variance Unequal Variance

µTarget 1.63 1.56
σTarget 0.71 0.71
c1 0.91 0.92
c2 0.94 0.95
c3 1.03 1.04
c4 1.23 1.22
c5 1.75 1.71
χ2 107.5 24.0
df 9 8
p 0.000 0.002
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description-matched photos. Thus, the lure distribution, but not the
target distribution, included item variance. It seems reasonable to
suppose that selectively adding item variance to the fillers would result
in a foil distribution with greater variance than would otherwise be the
case. With enough item variance, the variance of the lure distribution
would exceed the variance of the target distribution (as suggested by
the best-fitting model). Yotsumoto, Kahana, McLaughlin, and Sekuler
(2008) reported a similar result in a working memory task for visual
textures. The task they used was similar to the task we used in that a
small number of items were presented at study and test. Although their
targets and foils both varied across trials, they proposed a summed-
similarity account of recognition (implemented within a signal detec-
tion framework) that predicted that the variance of the memory-match
signal generated by targets should be less than that generated by the
foils. Thus, conceivably, the effect we observed here would be observed
even if the target were varied across participants (i.e., even if every
participant watched a different mock-crime video).

We next fit the model again, this time analyzing the data separately
by position so that we could estimate whether µTarget changes as a
function of position. As shown earlier in Fig. 8A, the area under the
ROC decreases substantially with increasing position. Is the same true
of µTarget, which is a discriminability parameter (equal to d′ in the equal-
variance case)? We first fit a model in which µTarget was fixed across
positions and then compared it to a model in which µTarget could differ
between position 1 (µTarget1), effectively a showup, and the other six
positions, for which µTarget was equated (µTarget2-6). The results (Table 4)
demonstrated that the fit was significantly improved by allowing µTarget
to differ in this way, χ2(1) = 231.9–211.5=20.4, p < .001. Note that
when discriminability was allowed to change as a function of sequential
position, µTarget2-6 (1.60) was greater than µTarget1 (1.37), which means
that underlying discriminability increased for the later sequential po-
sitions even though empirical discriminability (the area under the ROC
curve) decreased. This result is consistent with diagnostic feature-de-
tection theory (Wixted & Mickes, 2014) described earlier. However, the
fit was not further improved by allowing µTarget to differ for positions 2
through 6. Diagnostic feature-detection theory would naturally predict
an ever-increasing effect (presumably with diminishing returns) as
participants come to better appreciate which facial features are non-
diagnostic. These results indicate either that participants fully appre-
ciated which features are non-diagnostic upon realizing that the face in
position 2, like the face in position 1, also resembles the perpetrator or
that some other explanation for the apparent increase in underlying
discriminability applies. In any case, the data show no evidence of
additional gains beyond position 2.

We next allowed σTarget to also change between position 1 vs. posi-
tions 2–6 instead of holding it constant. Adding this parameter sig-
nificantly improved the fit, χ2(1)= 211.5–204.6=6.9, p= .009, and

both µTarget and σTarget were found to increase as a function of position.
Their estimated values were 1.42 and 0.62, respectively, for position 1,
and 1.60 and 0.78, respectively, for positions 2–6. Using these values to
compute de (a d′-like discriminability measure that takes into account
unequal variances) yields 1.58 for position 1 and 1.70 for positions 2
through 6 (Macmillan & Creelman, 2005). Using da (another d′-like
discriminability measure that takes into account unequal variances)
yields 1.71 for position 1 and 1.78 for positions 2 through 6.

For the analyses discussed thus far, the five confidence criteria were
fixed across the six positions, but it seems possible that, in truth, they
would differ across positions. We therefore next allowed the five con-
fidence criteria to shift in lockstep for each of the six positions. This
analysis added five additional parameters, one for each position 2
through 6. Thus, for example, if the position 2 shift parameter were
estimated to be 0.05, it would mean that all of the confidence criteria
shifted 0.05 standard deviations in the conservative direction for po-
sition 2 relative to position 1. Similarly, if the position 3 shift parameter
were estimated to be −0.05, it would mean that all of the confidence
criteria shifted 0.05 standard deviations in the liberal direction for
position 3 relative to position 1. We first performed this analysis with
µTarget and σTarget fixed across positions. As shown earlier in Table 4,
with µTarget and σTarget and the confidence criteria fixed across positions,
the goodness-of-fit was χ2(83)= 231.9. When lockstep shifts of the
confidence criteria was permitted, the fit of the model, χ2(78)= 195.6,
was significantly improved, χ2(5)= 231.9–195.6= 36.3, p < .001.
The estimated criterion-shift parameters were 0.04, −0.09, −0.12,
−0.02, and 0.03 for positions 2 through 6, respectively. Thus, although
they shifted to a significant degree, the confidence criteria did not ap-
pear to shift in a very systematic way. When we next allowed µTarget to
vary for position 1 vs. positions 2–6, the fit was again significantly
improved, χ2(1) = 15.8, p < .001, with its value being higher for
position 1 (1.61) relative to the later positions (1.38). As before, al-
lowing σTarget to also vary as a function of position improved the fit still
further, χ2(1) = 7.4, p= .007. Using the estimated values of µTarget and
σTarget to compute de and da yielded virtually identical values as those
reported above for the fixed-criteria analysis.4

Model-free estimates of underlying discriminability
In all of the previous analyses, the ROC curves for later positions

were dragged down because participants who made an ID early did not
have the opportunity to make either a hit or a false alarm, but they still
contributed to the denominator of the correct ID rate and the false ID
rate. For applied purposes, all participants need to be included in the
denominator because they are eyewitnesses who would be tested but
would not have the opportunity to make a suspect ID. However, for
theoretical purposes, it is worth separately considering the performance
of only the subset of participants at each position who have not yet
eliminated themselves because of a prior filler ID. For example, imagine
that 600 participants were presented with a target-present lineup con-
taining the guilty suspect in position 3. If 200 made a previous filler ID,
200 others did not make a previous filler ID and made a correct suspect
ID, and the remaining 200 did not make any ID in the first three po-
sitions, the position 3 hit rate would be 200/600=0.33. However,
because of the stopping rule, only 400 participants had an opportunity
to identify the suspect in position 3. For that subset of participants
considered separately, the hit rate would be 200/400=0.50. Plotting
the ROC data in this manner effectively removes the fundamental
constraint imposed by the stopping rule and would allow any increase
in discriminability as a function of position to be observed without
having to fit a model.

Table 4
Optimal parameter estimates for the fits of the constant-discriminability and
changing-discriminability signal detection models to the data (not aggregated
across positions) from Experiment 1.
Parameter Constant Discriminability Changing Discriminability

µTarget1 1.54 1.37
µTarget2-6 1.54 1.60
σTarget 0.73 0.73
c1 0.92 0.92
c2 0.95 0.95
c3 1.04 1.04
c4 1.22 1.22
c5 1.70 1.70
χ2 231.9 211.5
df 83 82
p 0.000 0.000

Note. The degrees of freedom are large in this case because the model is fit to
multiple data cells for each position.

4 We also allowed the confidence criteria to vary independently across posi-
tions, using 30 confidence parameters in all (5 for each position). The fit was
significantly improved by the addition of these parameters, but no conclusions
were affected. This version of the model is likely over-parameterized.
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Using this approach, the area under the empirical ROC should now
reflect underlying discriminability. Fig. 9 shows the ROC curve for
position 1 plotted against the ROC curve for positions 2–6 when con-
sidering only the subset of participants who have not yet made an
identification prior to getting to each position. The ROC is visually
lower for position 1 than it is for the later positions (consistent with the
model fits).

We also performed this model-free area-under-the-curve analysis
separately by the sequential position of the suspect. Specifically, we
computed pAUC for each of the six ROCs computed in the manner
described above, using the false alarm rate range covered by the posi-
tion-6 ROC (a range over which all six ROCs yielded hit- and false-alarm
rate data). Fig. 10 shows the results. The figure also shows the mean
pAUC (depicted by the solid horizontal line) and 95% confidence in-
terval (depicted by dashed horizontal lines) computed using the pAUC
values for positions 2 through 6. The results of this analysis correspond
to the analyses reported thus far. That is, discriminability was higher
(and essentially constant) for positions 2 through 6 relative to position
1, the discriminability of which falls outside the range of the subsequent

values. At a minimum, without relying on any model fitting, this ana-
lysis shows that psychological discriminability does not decrease as a
function of sequential position—if anything, it increases, despite the
fact that empirical discriminability (computed using the stopping rule)
decreased dramatically over the same range (Fig. 8A).

Reaction time data
The apparent increase in discriminability as a function of sequential

position was predicted by diagnostic feature-detection theory, but it is
obviously not the only possible explanation. Another possible ex-
planation for the higher psychological performance for later positions is
that participants change their speed-accuracy boundaries over the
course of testing. According to the diffusion model, spreading out the
decision boundaries would increase accuracy and also result in longer
reaction times (Ratcliff, 1978). Table 5 shows median response times
for the decisions made in each position. The data show that response
times were longer for the first position than for later positions such that,
if anything, changing decision boundaries worked against detecting an
increase in discriminability as sequential position increased. In target
present lineups, response times were significantly longer for position 1
than for position 6, t(3187)= 9.85, p < .001. In target absent lineups,
response times were also significantly longer for position 1 than for
position 6, t(3171)= 20.80, p < .001. Note that these are within-
subject t-tests because each participant made a response in position 1
(whether “yes” or “no”) and in position 6.

We also performed an analysis of response times for the first “yes”
decision to the suspect in target-present lineups and for the first “yes”
decision to a filler in target-absent lineups. These are the “yes” re-
sponses used for the model-based analyses of underlying discrimin-
ability reported above (which show that, if anything, discriminability
increased with later suspect positions). Fig. 11 shows the relevant data.
In both Fig. 11A (target-present) and 11B (target-absent), the response
time values for positions 2 through 6 were used to compute the average
of the median response times (depicted by the solid horizontal line) and
95% confidence interval (depicted by dashed horizontal lines). In both
cases, the median response time for position 1 fell above the range of
the subsequent response times. Thus, we infer that the increase in un-
derlying discriminability for positions 2–6 relative to position 1 did not
occur because participants allowed more information to accumulate
before responding in the later positions.

Sequential dependencies
The signal detection model we fit to the data does not take into

consideration the possibility that how participants responded on earlier
positions influenced how they responded on later positions. For ex-
ample, once participants make an ID, they may be hesitant to make a
subsequent ID because they think they have already identified the
guilty person, and there can be only one guilty person. We explored this
possibility by examining the average confidence rating to fillers before
and after a target was identified in target-present lineups and to fillers
before and after another filler was identified in target-absent lineups. In
other words, we examined how responding changed immediately after
making a first positive identification.

Fig. 9. ROC curve for position 1 plotted against the ROC curve for positions 2–6
when considering only the subset of participants who have not yet made an
identification prior to getting to each position.

Fig. 10. pAUC estimates for positions 1 through 6 when considering only the
subset of participants at each position who have not yet made a prior identi-
fication. The solid horizontal line represents the mean value for the pAUC es-
timates for positions 2 through 6 (filled symbols), and the dashed horizontal
lines represent the 95% confidence interval for those points. The pAUC estimate
for positon 1 is shown as an open symbol.

Table 5
Average response times for each position in target present and target absent
lineups.
Position Target Present Target Absent

1 7.04 7.16
2 5.60 5.88
3 5.28 5.53
4 5.12 5.45
5 4.89 5.28
6 4.79 5.06
Mean 5.46 5.73
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This analysis revealed the existence of sequential dependencies.
That is, in both target-present and target-absent lineups, participants
were more certain that a subsequent filler was not the perpetrator (i.e.,
they were more conservative) after making an identification than after
making no identification. Table 6 shows the average confidence ratings
given to the filler immediately before and immediately after responding
“ID” or “No ID.” The difference between the before and after ratings
differed significantly depending on whether a suspect was identified or
not identified, t(1288)= 5.09, p < .001. The difference between the
before and after ratings also differed significantly depending on whe-
ther a filler was identified or not identified, t(7841)= 4.69, p < .001.
Thus, not surprisingly, participants effectively became more con-
servative after making a first identification.

The signal detection model we used predicts that the first-identifi-
cation-only rule itself is what creates the empirical position effects we
observed (i.e., decreasing area under the ROC with increasing sequen-
tial position). According to this model, if the highest-confidence ID is
counted instead of only counting the first ID, these artificially-induced
position effects should no longer be apparent (i.e., the ROCs from each
position would fall atop one another). However, as just noted, due to

sequential dependencies in responding, participants were less likely to
make a subsequent identification after making an initial identification.
This suggests that position effects similar to those created by the first-
identification-only rule may still be present even when the stopping
rule is eliminated and each participant’s highest-confidence ID is
counted as the ID. Indeed, Fig. 12 shows the same general pattern of
position effects when the highest-confidence ID is counted rather than
counting the first-ID. Position effects are clearly attenuated compared
to when the stopping rule is in effect, but a self-imposed stopping rule
(i.e., reluctance to make another ID if one was already made) still
creates clear position effects, with empirical discriminability being
lower for the later sequential positions. Partial area under the curve
analysis over the false ID rate range covered by the position 6 data
revealed that the difference between position 1 (pAUC=0.033) and
position 6 (pAUC=0.026) was significant, D=2.53, p= .012. We
found essentially the same pattern if each position is treated as a
showup (counting suspect IDs regardless of whether a previous ID was
made).

Discussion

The structural constraints of the sequential procedure that are im-
posed by the stopping rule create a situation wherein empirical dis-
criminability (i.e., the area under the ROC curve) differs from underlying
discriminability. Having seen a previous face improves eyewitnesses’
ability to discriminate innocent from guilty suspects. This can be best
appreciated when the data are fit using a model that is cognizant of the
underlying structure of the test. The observation that underlying dis-
criminability is higher for later positions, however, does not mean that
police who use a sequential lineup with a first-identification-only rule
should place the suspect in a later lineup position. In fact, the re-
commendation to policymakers that follows from this experiment
would be exactly the opposite because empirical discriminability can
drop off dramatically as the suspect appears in a later lineup position.

No matter how the data are analyzed, the results indicate that un-
derlying discriminability was higher for suspect positions 2 through 6
relative to suspect position 1, a finding that was predicted by diagnostic
feature-detection theory. However, the results do not offer definitive
support of this theory. First, even though the increase in discrimin-
ability was apparently real, the effect was very small and likely would
not even be detected unless a large number of participants were tested
(as they were in this experiment). Second, the most straightforward

Fig. 11. Median response times for the first “yes” decision to the suspect in
target-present lineups (panel A) and to a filler in target-absent lineups (panel
B). The solid horizontal line represents the mean value for the median response
times from positions 2 through 6 (filled symbols), and the dashed horizontal
lines represent the 95% confidence interval for those points. The median re-
sponse time for positon 1 is shown as an open symbol.

Table 6
Average confidence ratings given to the filler immediately before and im-
mediately after responding “ID” or “No ID.”

Before After Difference

Suspect “ID” −74.3 −80.7 6.4
Suspect “No ID” −66.2 −60.7 −5.5
Filler “ID” −70.9 −54.4 −16.5
Filler “No ID” −72.7 −47.9 −24.8

Fig. 12. Empirical ROC curves for each position when the highest-confidence
response is counted as an ID rather than the standard first-ID-only counting as
an ID.
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prediction based on this theory is that discriminability should increase
in continuous fashion with each sequential suspect position as partici-
pants accumulate knowledge about which features are non-diagnostic.
Yet, a step function was observed instead. As such, it seems possible
that the increase in discriminability for the later positions reflects an
orientation effect. That is, conceivably, participants were both slow and
diagnostically inefficient when making a decision about the first face in
the lineup, but they were better oriented to the task after that (and so
responded more efficiently and effectively over the subsequent posi-
tions). Whatever the explanation, the key point is that underlying dis-
criminability was higher for the later suspect positions, in sharp con-
trast to empirical discriminability, which exhibited the opposite effect.

Although underlying discriminability apparently increases for later
lineup positions, the fact that empirical discriminability decreases by
position suggests that a sequential lineup might be expected to perform
worse than a showup. Fundamentally, a showup is a sequential lineup
with the suspect in the first position. The only real difference between
the two procedures is that when eyewitnesses see the face in the first
position of a sequential lineup, they know they will view additional
faces afterwards, whereas with a showup, eyewitnesses know that they
will view only a single test face. Showups are often called suggestive
because they “suggest” that the face being tested is likely to be the
guilty suspect (Dysart & Lindsay, 2012). Therefore, showups would be
expected to result in more liberal responding than sequential lineups,
but using the sequential procedure (rather than a showup) may not
enhance empirical discriminability. In fact, as noted above, the coun-
tervailing force of increased underlying discriminability for later sus-
pect positions is quite small and therefore seems unlikely to appreciably
counteract the more pronounced negative force exerted by the stopping
rule on empirical discriminability as suspect position increases. In our
second experiment, we directly compared a showup to the sequential
lineup.

Experiment 2

Method

Participants
A total of 4398 subjects completed the task on MTurk, but some

answered the attention-check question incorrectly and were excluded,
leaving a total of 3919 participants. Of those, 1966 were randomly
assigned to the sequential lineup condition, (999 were presented with a
target-present lineup and 967 with a target-absent lineup) and 1953
were randomly assigned to the showup condition (980 were presented
with a target-present showup and 973 with a target-absent showup).
Participants were each paid $0.25 for completing the task.

Materials
The materials were identical to those used in Experiment 1.

Procedure
For the participants tested with a sequential lineup, the procedure

was exactly the same as it was in Experiment 1. For the participants
tested with a showup, the study phase and distractor task were the
same, except that they were informed they would see only a single face
at test.

Results
Fig. 13 displays the empirical ROC curves for the showup vs. the

sequential lineup (collapsed across position). Note that the showup
curve represents positive IDs only (i.e., the curve could have been ex-
tended to the upper right corner by including showup rejections, as is
typically done with old/new ROC data). Obviously, the sequential
lineup did not yield a higher area under the curve than the showup. If
anything, the trend is slightly in the opposite direction, though the
partial area under the curve over the range covered by the sequential

procedure (namely, FAR=0 to FAR=0.114) did not differ sig-
nificantly from that of the showup. It is apparent in Fig. 13 that the
overall hit and false alarm rates for the showup considerably exceed the
corresponding values for the sequential lineup (rightmost ROC point for
each procedure). This is consistent with the idea that showups are
“suggestive.” For the showup, the overall hit and false alarm rates were
0.863 and 0.255, respectively (DRShowup= 3.39). The corresponding
values for the sequential procedure were 0.518 and 0.114, respectively
(DRSequential = 4.56). Thus, using the DR to gauge the diagnostic ac-
curacy of an identification procedure, as researchers did for many
years, one would judge the sequential lineup to be superior to the
showup. However, according to these data, the use of a showup in
conjunction with a conservative decision criterion could achieve a
lower false alarm rate and the same (if not higher) hit rate compared to
the sequential procedure.

Then again, the sequential ROC curve is affected by the overall
decision criterion, which was relatively liberal in this experiment. The
more liberal the overall decision criterion, the lower the confidence-
based ROC for the sequential procedure will be. By contrast, the
showup is represented by a single ROC curve, because it follows the
standard rules wherein becoming more liberal or conservative in re-
sponding simply creates another point on the same ROC curve. How
would the showup ROC compare to the lineup ROC if a more con-
servative decision criterion had been used?

Before addressing that question, Fig. 14 presents the empirical ROC
curves for three different decision criteria, with the binary ROC shown
in Fig. 14A for three different overall decision criteria (>−80,> 0,
and> 80), and the corresponding confidence-based ROCs shown in
Fig. 14B. These data largely replicate the findings of Experiment 1.

Fig. 15 reproduces the data in Fig. 14B along with the showup data
shown earlier in Fig. 13. Interestingly, and as would be expected, if
responding is conservative enough, the points on the sequential ROC
overlap with the points for the showup. Thus, at least according to this
analysis, sequential lineups can certainly achieve more conservative
responding and a higher DR than showups computed from overall hit
and false alarm rates, but they may not necessarily achieve higher
empirical discriminability when a fair lineup is used.

Model fits. In terms of underlying discriminability, the showup and
overall sequential lineup yielded similar results. As shown in Table 7,
µTarget was nearly identical for the two procedures, and σTarget less than 1
in both cases. When µTarget and σTarget were constrained to be equal for
the two procedures, the overall chi-square goodness-of-fit statistic did
not increase significantly, χ2(2)= 4.20, p= .122. In addition, when we
fit the sequential data separately by position, there were no significant
differences between position 1 and the later positions in terms of µTarget.
Note that Experiment 2 was not designed to detect significant position
effects, whereas Experiment 1 was, using more than three times as
many participants. Experiment 2 was designed to compare the
sequential procedure to the showup procedure and may not have had

Fig. 13. Empirical ROC curves for the showup vs. the sequential lineup in
Experiment 2 (collapsed across positions).
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the statistical power to detect significant position effects on d′ that
might exist.

General discussion

The sequential lineup is widely used by the police in the U.S., but it

is not well understood theoretically. The theory most often associated
with the sequential procedure holds that it promotes “absolute” deci-
sions by focusing attention on a face presented in isolation instead of
encouraging witnesses to compare that face to the other faces in the
lineup (as a simultaneous procedure does). As originally conceived
(Wells, 1984), this was a theory of response bias. That is, theoretically,
the simultaneous presentation of faces biases eyewitnesses to choose
the most familiar face in the lineup even if that face does not match the
witness’s memory of the perpetrator very well. By contrast, the pre-
sentation of faces in isolation theoretically reduces that bias to choose,
resulting in lower hit and false alarm rates (and increasing the DR).
However, because response bias can be easily manipulated without
switching lineup procedures, a more interesting question concerns the
effect of sequential lineups on discriminability compared to other
identification procedures.

Empirical vs. underlying (psychological) discriminability

Previous studies comparing simultaneous lineups, sequential
lineups, and showups have generally found that the partial area under
the ROC curve (i.e., empirical discriminability) is greatest for simulta-
neous lineups (Mickes & Gronlund, 2017). Diagnostic feature-detection
theory (Wixted & Mickes, 2014) holds that these findings reflect the
advantage conferred by simultaneous lineups with respect to the de-
tection of non-diagnostic facial features. In other words, empirical
discriminability is higher for simultaneous lineups compared to se-
quential lineups and showups because underlying psychological dis-
criminability is higher for simultaneous lineups. However, the results
reported here show that structural constraints associated with the se-
quential presentation of faces can reduce the area under the ROC curve
for that procedure even if psychological discriminability (underlying d′)
is unaffected, as predicted by Rotello and Chen (2016).

Our findings provide a clear demonstration that psychological and
empirical discriminability need not agree with each other (Wixted &
Mickes, 2018). In fact, they can go in opposite directions, as they did
here. Earlier, we showed that the simplest signal detection model of
sequential lineup performance predicts that empirical discriminability
(pAUC) should decrease as the position of the suspect in the sequential
lineup increases (Fig. 6A) even if underlying discriminability (d′) re-
mains constant across suspect positions. We confirmed that prediction
in Experiment 1 (Fig. 8A). At the same time, diagnostic feature-detec-
tion theory predicts that underlying discriminability should increase as
the position of the suspect in the sequential lineup increases. Psycho-
logical discriminability is predicted to increase because seeing prior
faces should teach eyewitnesses that the faces in the lineup share fea-
tures. Because such features are non-diagnostic (precisely because they
are shared by everyone in the lineup), discounting them enhances the
ability to discriminate between innocent suspects/fillers and guilty
suspects. One way to detect increased discriminability by position, if it
exists, is to fit a model to the data that is cognizant of the structural
constraint imposed by the stopping rule in the sequential procedure
(Kaesler et al., 2017). Indeed, when such a model is fit to our data, the
results show that psychological discriminability increased as a function
of suspect position (Table 4) despite the decreasing empirical dis-
criminability as a function of suspect position.

The increase in underlying psychological discriminability with in-
creasing suspect position was fairly small and likely would not have
been detected had we not tested a large number of participants in
Experiment 1. Indeed, the effect was not detected in Experiment 2,
which tested only about one-third the number of participants tested in
Experiment 1. Although small, the effect seems real because it is ap-
parent no matter how the data are analyzed—including using a model-
free method where pAUC ought to reflect underlying psychological
discriminability because the constraint imposed by the stopping rule
was removed (e.g., Fig. 10). We investigated the effect of suspect po-
sition on underlying discriminability because this effect was predicted

Fig. 14. (A) The empirical binary ROC curves for the results of Experiment 2.
(B) The empirical confidence-based ROC curves for the results of Experiment 2.

Fig. 15. Empirical ROC curve for the showup and the sequential lineup for
three different criteria.

Table 7
Optimal parameter estimates for the fits of the unequal-variance signal detec-
tion models to the showup data and the sequential (SEQ) lineup data (collapsed
across positions) from Experiment 2.
Parameter Showup SEQ Lineup

µTarget 1.58 1.60
σTarget 0.90 0.73
c1 0.62 1.03
c2 0.69 1.02
c3 0.86 1.11
c4 1.16 1.26
c5 1.85 1.69
χ2 7.0 11.5
df 3 8
p 0.071 0.175
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by diagnostic feature-detection theory (Wixted & Mickes, 2014). Al-
though the data support that theory, the small size of the effect may
indicate that the discounting of non-diagnostic features is much less
pronounced when faces are presented sequentially compared to when
they are presented simultaneously. Alternatively, given the step-func-
tion nature of the increase in psychological discriminability from po-
sition 1 to positions 2–6, the results may not reflect the discounting of
non-diagnostic features at all and may simply indicate that participants
became better oriented to the task after making a decision to the first
face in the lineup. Regardless of which explanation applies, the results
demonstrate that empirical discriminability and underlying psycholo-
gical discriminability can be affected in opposite ways.

“Filler siphoning” and the effect of response bias on the sequential ROC

Our main findings were based on analyses that assumed a neutral
response bias, but we also investigated the effect of liberal and con-
servative response biases on the empirical ROC data generated by the
sequential procedure. By artificially manipulating the overall decision
criterion for counting IDs (as illustrated in Fig. 5), we found that
changing response bias can magnify or minimize effects of sequential
position on empirical discriminability. When we used a liberal criterion,
position effects were magnified, but when we used a conservative cri-
terion, they were all but eliminated (Fig. 8). Although we did not ma-
nipulate overall response bias across conditions using instructions, we
predict that the same effects would be observed using that approach (to
the extent that the instructions successfully manipulated response bias).

The fundamental constraint that reduces empirical discriminability
for later suspect positions in the sequential lineup is that fillers that
appear before the suspect in the lineup and that happen to generate an
above-criterion memory signal effectively terminate the procedure,
thereby preventing guilty suspect IDs that might have otherwise oc-
curred. Expressed in language that is sometimes used in the eyewitness
identification literature, the constraint imposed by the use of sequential
lineups in conjunction with a stopping rule is caused by “filler si-
phoning” (Smith, Wells, Lindsay, & Penrod, 2017; Wells, Smalarz, &
Smith, 2015). Filler siphoning refers to the fact that the presence of
fillers in simultaneous or sequential lineups reduces the number of
suspect IDs that would occur in their absence.

Filler siphoning is usually considered to be a beneficial phenomenon
because, compared to a showup, fillers in a simultaneous lineup draw
IDs away from innocent suspects to a greater extent than guilty suspects
(e.g., Smith, Wells, Smalarz, & Lampinen, 2018). This is another way of
saying that filler siphoning has the effect of increasing the DR for
lineups compared to showups, just as the use of a more conservative
response criterion would (Colloff et al., 2018). Thus, as currently con-
strued, the apparently beneficial effect of filler siphoning (namely, an
increase in the DR) is exactly the same effect that was once thought to
indicate a sequential superiority effect. However, just as a higher DR
resulting from more conservative responding does not reflect superior
empirical discriminability (e.g., in a comparison of relatively liberal
simultaneous lineups vs. relatively conservative sequential lineups), a
higher DR resulting from filler siphoning also does not reflect superior
empirical discriminability (e.g., in a comparison of showups, which
have no fillers, vs. simultaneous or sequential lineups, which do). As
noted by Colloff et al. (2018), filler siphoning could increase the DR
whether empirical discriminability, as measured by ROC analysis, in-
creased, decreased or remained unchanged (just as is true of more
conservative responding).

Not only is the effect of filler siphoning not necessarily beneficial in
terms of empirical discriminability, it is clearly detrimental in the case
of sequential lineups. If a filler happens to generate a relatively weak
memory signal that barely surpasses a liberal decision criterion, the
filler will be identified (presumably with low confidence), thereby
canceling the opportunity to identify the guilty suspect in a later po-
sition, who might have generated a much stronger memory signal. The

effect of filler siphoning, which exerts downward pressure on the em-
pirical ROC for later sequential positions, can more than cancel any
positive effect of increasing underlying psychological discriminability
that might occur as a function of sequential position. That clearly oc-
curred in our Experiment 1, where the empirical ROCs showed no sign
of increasing discriminability as a function of suspect position (instead,
it monotonically decreased) despite the fact that underlying dis-
criminability increased. The detrimental effect of filler siphoning on
empirical discriminability may explain why the sequential procedure
did not outperform and instead slightly but non-significantly under-
performed the showup procedure in Experiment 2 (Fig. 13).

Interestingly, and somewhat surprisingly, for fair lineups of the kind
we used here, there is no evidence anywhere in the scientific literature
that sequential lineups yield higher empirical discriminability than
showups. Sequential lineups clearly do elicit much more conservative
responding than showups, thereby increasing the DR. In the past, this
result has been mistakenly interpreted to mean that sequential lineups
are superior to showups. However, as noted above, this result may in-
stead simply reflect the fact that sequential lineups induce more con-
servative responding than showups, as was true in Experiment 2 here
(see Fig. 13). Indeed, the DR was substantially higher for the sequential
procedure (DRSequential = 4.56 vs. DRShowup= 3.39) even though em-
pirical discriminability was slightly lower.

Unfair lineups reduce filler siphoning

The filler-siphoning constraint of the sequential procedure occurs
only to the extent that fillers generate a memory signal that exceeds the
decision criterion. Having a conservative criterion decreases the
chances that a filler will exceed the criterion, minimizing position ef-
fects on empirical discriminability (Fig. 8C), but another factor that can
reduce filler siphoning is the use of fillers that do not resemble the
perpetrator. In the extreme, for example, if only the suspect (innocent
or guilty) closely matched the description of the perpetrator, then filler
IDs would be rare. Under such conditions, participants would more
often have the opportunity to identify the guilty suspect, even if the
suspect was positioned late in the lineup. Imagine, for example, that the
mock-crime video depicted a perpetrator who was a clean-shaven white
male in his early 20 s with short dark brown hair. If the fillers generally
matched that description except that they were all in their 50 s, then
they would provide some useful information about non-diagnostic
features (e.g., they would reveal that short dark brown hair is not di-
agnostic of guilt), but they would likely not be identified because they
are too old. Thus, filler siphoning would be effectively eliminated.
Under such conditions, any increase in underlying psychological dis-
criminability might show up as an increase in empirical discriminability
for the later suspect positions.

These considerations may help to explain why two previous studies
have reported significantly increased empirical discriminability for
later sequential lineup positions (Meisters, Diedenhofen, & Musch,
2018; Gronlund et al., 2012). Both of these studies used unfair lineups
in which fillers were less likely to be identified than the designated
innocent suspect in the target-absent lineup. Thus, the fillers were less
likely to generate a memory signal strong enough to exceed the decision
criterion (as illustrated in Fig. 16). Using 6-person sequential lineups,
Gronlund et al. (2012) found that pAUC for position 5 (0.141) sig-
nificantly exceeded pAUC for position 2 (0.092). This increase in em-
pirical discriminability presumably reflects a corresponding increase in
underlying psychological discriminability that was not counteracted by
filler siphoning. The same result was reported in a recent study by
Meisters et al. (2018), who also tested unfair lineups in which filler IDs
were rare. In their 4-person sequential lineups, pAUC for position 4
(0.10) was significantly higher than it was for position 1 (0.05). By
contrast, in fair lineups of the kind we tested here (where filler si-
phoning would be expected to occur and in fact did frequently occur),
any increase in underlying psychological discriminability as a function
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of suspect position is apparently swamped by the negative effect of filler
siphoning on empirical discriminability.

Because underlying psychological discriminability (measured by d′)
and empirical discriminability (measured by pAUC) need not necessa-
rily agree with each other, it is important to know which measure an-
swers the question of interest (Wixted & Mickes, 2018). Both types of
discriminability are important, but it is essential to appreciate when
each is important. When the question pertains to a prediction made by a
theory, such as diagnostic feature-detection theory, a model is needed
to measure underlying psychological discriminability (d′). But when the
question concerns application in the real world, only empirical dis-
criminability, measured by pAUC, is relevant (Wixted & Mickes, 2018).

Applied considerations

The idea that underlying psychological discriminability is of no
interest to policymakers is not intuitive, but the data we report here
illustrate why it is so. For example, if a suspect is placed in position 6 of
the sequential procedure and a stopping rule is used, it would be no
consolation to know that psychological discriminability may be higher
for that position compared to position 1. The fact that empirical dis-
criminability is low for the last position means that, for applied pur-
poses, routinely placing suspects in position 6 would be a bad idea. For
applied purposes, the goal of any eyewitness identification procedure is
to maximize empirical discriminability. Higher empirical discrimin-
ability both reduces the likelihood that innocent suspects will be mis-
identified (and possibly wrongfully convicted) and increases the like-
lihood that guilty suspects will be prevented from committing future
crimes.

Remarkably, approximately 30% of more than 15,000 U.S. police
departments have adopted the sequential lineup procedure (Police
Executive Research Forum, 2013) even though it is not yet well un-
derstood at a theoretical level. Only recently have researchers begun to
understand the fundamental constraints on empirical discriminability
created by the sequential procedure. Our findings provide an empirical
demonstration of these constraints. Rotello and Chen (2016) were the
first to theoretically identify the constraint, and it was clearly evident in
our empirical data (Fig. 7A). Using the same basic signal detection
model that they did, we predicted (Fig. 6) and documented (Fig. 8)
further constraints on empirical discriminability as a function of the
suspect’s position in the sequential lineup. These findings seem sig-
nificant because, in the original study that introduced the sequential
procedure, Lindsay and Wells (1985) stated that “[f]or sequential
lineup presentation to be a viable alternative [to simultaneous pre-
sentation], it is important that the results of the procedure not be un-
duly influenced by order effects (i.e., the position of the suspect)” (p.
561). The present research demonstrates how large an influence the
position of the suspect can have on discriminability and how that effect
can be masked by relying on a dependent measure like the DR (e.g., see

the DR values in Table 2, which remain essentially constant as a
function of suspect position).

Most of the problems with the sequential procedure arise because of
the standard stopping rule used in laboratory research. It is not clear
how often police use this stopping rule in actual practice (e.g., Steblay
et al., 2011, noted that they are unaware of any jurisdiction that does),
but given its deleterious effect on empirical discriminability, the police
would probably be wise not to follow the first-identification-only
stopping rule. However, even if they do not use the stopping rule, the
data shown in Fig. 12 (where the highest-confidence ID was used rather
than the first ID) suggest that sequential lineups can still lead to dele-
terious position effects on empirical discriminability. If fair sequential
lineups do not yield higher discriminability than showups, and if they
yield lower empirical (not to mention psychological) discriminability
than simultaneous lineups, the argument in favor of police switching to
the sequential procedure is hard to fathom. The larger implication may
be that before advocating major changes to existing policy, scientists
should have a deep theoretical understanding of any proposed reform,
one that is as grounded in basic research as it is in applied research.
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